
moh
am

ed
so

he
l.c

o.i
n

Python 3

In general, statements are executed sequentially- The first statement in a function is

executed first, followed by the second, and so on. There may be a situation when you need

to execute a block of code several number of times.

Programming languages provide various control structures that allow more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times.

The following diagram illustrates a loop statement.

Python programming language provides the following types of loops to handle looping

requirements.

Loop Type Description

while loop Repeats a statement or group of statements while a given

condition is TRUE. It tests the condition before executing the

loop body.

for loop Executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

6. Loops

1

moh
am

ed
so

he
l.c

o.i
n

Python 3

nested loops You can use one or more loop inside any another while, or

for loop.

while Loop Statements

A while loop statement in Python programming language repeatedly executes a target

statement as long as a given condition is true.

Syntax

The syntax of a while loop in Python programming language is-

while expression:

 statement(s)

Here, statement(s) may be a single statement or a block of statements with uniform

indent. The condition may be any expression, and true is any non-zero value. The loop

iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately

following the loop.

In Python, all the statements indented by the same number of character spaces after a

programming construct are considered to be part of a single block of code. Python uses

indentation as its method of grouping statements.

Flow Diagram

2

moh
am

ed
so

he
l.c

o.i
n

Python 3

Here, a key point of the while loop is that the loop might not ever run. When the condition

is tested and the result is false, the loop body will be skipped and the first statement after

the while loop will be executed.

Example

#!/usr/bin/python3

count = 0

while (count < 9):

 print ('The count is:', count)

 count = count + 1

print ("Good bye!")

When the above code is executed, it produces the following result-

The count is: 0

The count is: 1

The count is: 2

The count is: 3

The count is: 4

The count is: 5

The count is: 6

The count is: 7

The count is: 8

Good bye!

The block here, consisting of the print and increment statements, is executed repeatedly

until count is no longer less than 9. With each iteration, the current value of the index

count is displayed and then increased by 1.

The Infinite Loop

A loop becomes infinite loop if a condition never becomes FALSE. You must be cautious

when using while loops because of the possibility that this condition never resolves to a

FALSE value. This results in a loop that never ends. Such a loop is called an infinite loop.

An infinite loop might be useful in client/server programming where the server needs to

run continuously so that client programs can communicate with it as and when required.

#!/usr/bin/python3

var = 1

while var == 1 : # This constructs an infinite loop

 num = int(input("Enter a number :"))

 print ("You entered: ", num)

print ("Good bye!")

3

moh
am

ed
so

he
l.c

o.i
n

Python 3

When the above code is executed, it produces the following result-

Enter a number :20

You entered: 20

Enter a number :29

You entered: 29

Enter a number :3

You entered: 3

Enter a number :11

You entered: 11

Enter a number :22

You entered: 22

Enter a number :Traceback (most recent call last):

 File "examples\test.py", line 5, in

 num = int(input("Enter a number :"))

KeyboardInterrupt

The above example goes in an infinite loop and you need to use CTRL+C to exit the

program.

Using else Statement with Loops

Python supports having an else statement associated with a loop statement.

 If the else statement is used with a for loop, the else statement is executed when

the loop has exhausted iterating the list.

 If the else statement is used with a while loop, the else statement is executed

when the condition becomes false.

The following example illustrates the combination of an else statement with a while

statement that prints a number as long as it is less than 5, otherwise the else statement

gets executed.

#!/usr/bin/python3

count = 0

while count < 5:

 print (count, " is less than 5")

 count = count + 1

else:

 print (count, " is not less than 5")

When the above code is executed, it produces the following result-

4

moh
am

ed
so

he
l.c

o.i
n

Python 3

0 is less than 5

1 is less than 5

2 is less than 5

3 is less than 5

4 is less than 5

5 is not less than 5

Single Statement Suites

Similar to the if statement syntax, if your while clause consists only of a single statement,

it may be placed on the same line as the while header.

Here is the syntax and example of a one-line while clause-

#!/usr/bin/python3

flag = 1

while (flag): print ('Given flag is really true!')

print ("Good bye!")

The above example goes into an infinite loop and you need to press CTRL+C keys to exit.

for Loop Statements

The for statement in Python has the ability to iterate over the items of any sequence, such

as a list or a string.

Syntax

for iterating_var in sequence:

 statements(s)

If a sequence contains an expression list, it is evaluated first. Then, the first item in the

sequence is assigned to the iterating variable iterating_var. Next, the statements block is

executed. Each item in the list is assigned to iterating_var, and the statement(s) block is

executed until the entire sequence is exhausted.

Flow Diagram

5

moh
am

ed
so

he
l.c

o.i
n

Python 3

The range() function

The built-in function range() is the right function to iterate over a sequence of numbers.

It generates an iterator of arithmetic progressions.

>>> range(5)

range(0, 5)

>>> list(range(5))

[0, 1, 2, 3, 4]

range() generates an iterator to progress integers starting with 0 upto n-1. To

obtain a list object of the sequence, it is typecasted to list(). Now this list can be iterated

using the for statement.

>>> for var in list(range(5)):

print (var)

This will produce the following output.

0

1

2

3

4

Example

#!/usr/bin/python3

for letter in 'Python': # traversal of a string sequence

 print ('Current Letter :', letter)

print()

fruits = ['banana', 'apple', 'mango']

for myfruit in fruits: # traversal of List sequence

print ('Current fruit :', myfruit)

print ("Good bye!")

When the above code is executed, it produces the following result −

Current Letter : P

Current Letter : y

Current Letter : t

Current Letter : h

Current Letter : o

Current Letter : n

6

moh
am

ed
so

he
l.c

o.i
n

Python 3

Current fruit : banana

Current fruit : apple

Current fruit : mango

Good bye!

Iterating by Sequence Index

An alternative way of iterating through each item is by index offset into the sequence

itself. Following is a simple example-

#!/usr/bin/python3

fruits = ['banana', 'apple', 'mango']

for index in range(len(fruits)):

 print ('Current fruit :', fruits[index])

print ("Good bye!")

When the above code is executed, it produces the following result-

Current fruit : banana

Current fruit : apple

Current fruit : mango

Good bye!

Here, we took the assistance of the len() built-in function, which provides the total number

of elements in the tuple as well as the range() built-in function to give us the actual

sequence to iterate over.

Using else Statement with Loops

Python supports having an else statement associated with a loop statement.

 If the else statement is used with a for loop, the else block is executed only if for

loops terminates normally (and not by encountering break statement).

 If the else statement is used with a while loop, the else statement is executed

when the condition becomes false.

The following program demonstrates the use of break in a for loop iterating over a list.

User inputs a number, which is searched in the list. If it is found, then the loop terminates

with the 'found' message.

#!/usr/bin/python3

no=int(input('any number: '))

numbers=[11,33,55,39,55,75,37,21,23,41,13]

for num in numbers:

 if num==no:

print ('number found in list')

break

7

moh
am

ed
so

he
l.c

o.i
n

Python 3

Nested loops

Python programming language allows the use of one loop inside another loop. The

following section shows a few examples to illustrate the concept.

Syntax

for iterating_var in sequence:

 for iterating_var in sequence:

statements(s)

 statements(s)

The syntax for a nested while loop statement in Python programming language is as

follows-

while expression:

 while expression:

statement(s)

 statement(s)

A final note on loop nesting is that you can put any type of loop inside any other type of

loop. For example a for loop can be inside a while loop or vice versa.

Example

The following program uses a nested-for loop to display multiplication tables from 1-10.

#!/usr/bin/python3

import sys

for i in range(1,11):

else:

 print ('number not found in list')

The above program will produce the following output-

any number: 33

number found in list

any number: 5

number not found in list

 for j in range(1,11):

 k=i*j

 print (k, end=' ')

 print()

8

moh
am

ed
so

he
l.c

o.i
n

Python 3

The print() function inner loop has end=' ' which appends a space instead of default

newline. Hence, the numbers will appear in one row.

Last print() will be executed at the end of inner for loop.

When the above code is executed, it produces the following result −

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Loop Control Statements

The Loop control statements change the execution from its normal sequence. When the

execution leaves a scope, all automatic objects that were created in that scope are

destroyed.

Python supports the following control statements.

Control Statement Description

break statement Terminates the loop statement and transfers

execution to the statement immediately

following the loop.

continue statement Causes the loop to skip the remainder of its

body and immediately retest its condition prior

to reiterating.

pass statement The pass statement in Python is used when a

statement is required syntactically but you do

not want any command or code to execute.

Let us go through the loop control statements briefly.

break statement

The break statement is used for premature termination of the current loop. After

abandoning the loop, execution at the next statement is resumed, just like the traditional

break statement in C.

The most common use of break is when some external condition is triggered requiring a

hasty exit from a loop. The break statement can be used in both while and for loops.

If you are using nested loops, the break statement stops the execution of the innermost

loop and starts executing the next line of the code after the block.

9

moh
am

ed
so

he
l.c

o.i
n

Python 3

Flow Diagram

Syntax

The syntax for a break statement in Python is as follows-

break

Example

 # First Example

#!/usr/bin/python3

for letter in 'Python':

 if letter == 'h':

break

 print ('Current Letter :', letter)

 # Second Example a = 10

while a > 0:

print (a)

a = a - 1

if a == 5:

break

print ("Good bye!")

When the above code is executed, it produces the following result-

Current Letter : P

Current Letter : y

Current Letter : t

10

moh
am

ed
so

he
l.c

o.i
n

Python 3

Current variable value : 10

Current variable value : 9

Current variable value : 8

Current variable value : 7

Current variable value : 6

Good bye!

The following program demonstrates the use of break in a for loop iterating over a list.

User inputs a number, which is searched in the list. If it is found, then the loop terminates

with the 'found' message.

#!/usr/bin/python3

no=int(input('any number: '))

numbers=[11,33,55,39,55,75,37,21,23,41,13]

for num in numbers:

 if num==no:

print ('number found in list')

break

else:

 print ('number not found in list')

The above program will produce the following output-

any number: 33

number found in list

any number: 5

number not found in list

continue Statement

The continue statement in Python returns the control to the beginning of the current loop.

When encountered, the loop starts next iteration without executing the remaining

statements in the current iteration.

The continue statement can be used in both while and for loops.

Syntax

continue

11

moh
am

ed
so

he
l.c

o.i
n

Python 3

Flow Diagram

Example

#!/usr/bin/python3

for letter in 'Python': # First Example

 if letter == 'h':

continue

 print ('Current Letter :', letter)

 # Second Example a = 10

while a > 0:

a = a -1
if a == 5:

continue

print (a)

print ("Good bye!")

When the above code is executed, it produces the following result-

Current Letter : P

12

moh
am

ed
so

he
l.c

o.i
n

Python 3

Current Letter : y

Current Letter : t

Current Letter : o

Current Letter : n

9

8

7

6

4

3

2

1

0

Good bye!

pass Statement

It is used when a statement is required syntactically but you do not want any command

or code to execute.

The pass statement is a null operation; nothing happens when it executes. The

pass statement is also useful in places where your code will eventually go, but has not

been written yet i.e. in stubs).

Syntax

pass

Example

#!/usr/bin/python3

for letter in 'Python':

 if letter == 'h':

pass

print ('This is pass block')

 print ('Current Letter :', letter)

print ("Good bye!")

When the above code is executed, it produces the following result-

13

moh
am

ed
so

he
l.c

o.i
n

Python 3

Current Letter : P

Current Letter : y

Current Letter : t

This is pass block

Current Letter : h

Current Letter : o

Current Letter : n

Good bye!

14

